Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Circulation in the Gulf of Mexico is dominated by the Loop Current and associated mesoscale eddies. These mesoscale eddies pose a safety risk to offshore energy production and potential dispersal of large-scale pollutants like oil. We use a data-driven, physics-informed, and numerically consistent deep learning–based ocean emulator called OceanNet to generate a 120-day forecast of the sea surface height (SSH) in the eastern Gulf of Mexico. OceanNet uses a new dataset of high-resolution data assimilative ocean reanalysis (1993–2022) as input. This model is trained using years 1993–2018 and evaluated on four eddies during years 2019–21. For comparison, we use a state-of-the-art numerical ocean model to generate a dynamical model prediction initialized every 5 days from 27 April 2019 to 1 April 2020 (during eddies Sverdrup and Thor) using persistent forcing and boundary conditions. The dynamical model takes seven wall-clock days to run, whereas OceanNet runs in minutes. Edges of Loop Current eddies (LCEs) pose the most potent risk to offshore energy operations and pollutant dispersal due to strong water velocities. Therefore, most of the analysis focuses on edge accuracy, quantified by the modified Hausdorff distance. The edge of the LCEs is defined by the 17-cm sea surface height contour, which generally coincides with the strongest water velocity. The OceanNet prediction outperforms both persistence and the dynamical model prediction. Overall, this new ocean emulator provides a promising new approach to generate seasonal forecasts of LCEs and generates large model ensembles efficiently to quantify forecast uncertainty that is long needed by scientists and decision-makers for offshore operations. Significance StatementCirculation in the Gulf of Mexico (GoM) is dominated by the energetic Loop Current and associated mesoscale eddies (typically 150–400 km in diameter). As these eddies propagate westward through the Gulf, they pose a safety risk to offshore energy production and potential large-scale pollutant dispersal. We used ocean model output (1993–2022) to train a data-driven ocean emulator called OceanNet that generates a seasonal (up to 120 day) prediction of sea surface height (SSH) in the eastern GoM. For comparison, a simple dynamical model prediction is also evaluated. OceanNet’s performance is assessed with a focus on edge accuracy, the most potent risk to offshore energy operations and pollutant dispersal. Overall, OceanNet performs well for a seasonal forecast and shows great potential for further development.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for regional sea-suface height emulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill compared to a state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate initial steps for physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models.more » « less
An official website of the United States government
